FLUORIDE IN DRINKING WATER: A Scientific Review of EPA's Standards

Committee on Fluoride in Drinking Water

Board on Environmental Studies and Toxicology

Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

Summary

Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary maximum contaminant level (SMCL). The MCLG is a health goal set at a concentration at which no adverse health effects are expected to occur and the margins of safety are judged "adequate." The MCL is the enforceable standard that is set as close to the MCLG as possible, taking into consideration other factors, such as treatment technology and costs. For some contaminants, EPA also establishes an SMCL, which is a guideline for managing drinking water for aesthetic, cosmetic, or technical effects.

Fluoride is one of the drinking water contaminants regulated by EPA. In 1986, EPA established an MCLG and MCL for fluoride at a concentration of 4 milligrams per liter (mg/L) and an SMCL of 2 mg/L. These guidelines are restrictions on the total amount of fluoride allowed in drinking water. Because fluoride is well known for its use in the prevention of dental caries, it is important to make the distinction here that EPA's drinking-water guidelines are not recommendations about adding fluoride to drinking water to protect the public from dental caries. Guidelines for that purpose (0.7 to 1.2 mg/L) were established by the U.S. Public Health Service more than 40 years ago. Instead, EPA's guidelines are maximum allowable concentrations in drinking water intended to prevent toxic or other adverse effects that could result from exposure to fluoride.

In the early 1990s at the request of EPA, the National Research Council (NRC) independently reviewed the health effects of ingested fluoride and the scientific basis for EPA's MCL. It concluded that the MCL was an appropriate interim standard but that further research was needed to fill data gaps on total exposure to fluoride and its toxicity. Because new research on fluoride is now available and because the Safe Drinking Water Act requires periodic reassessment of regulations for drinking-water contaminants, EPA requested that the NRC again evaluate the adequacy of its MCLG and SMCL for fluoride to protect public health.

COMMITTEE'S TASK

In response to EPA's request, the NRC convened the Committee on Fluoride in Drinking Water, which prepared this report. The committee was charged to review toxicologic,

A-2.

Alternate Chemical Names

What is this information?

- ACIDE FLUOROSILICIQUE (DOT FRENCH)
- ACIDE FLUOSILICIQUE (DOT FRENCH)
- ACIDE HYDROFLUOROSILICIQUE (DOT FRENCH)
- ACIDE HYDROFLUOSILICIQUE (DOT FRENCH)
- ACIDO FLUOROSILÍCICO (DOT SPANISH)
- ACIDO FLUOSILÍCICO (DOT SPANISH)
- ACIDO HIDROFLUOROSILÍCICO (DOT SPANISH)
- ACIDO HIDROFLUOSILÍCICO (DOT SPANISH)
- DIHYDROGEN HEXAFLUOROSILICATE
- DIHYDROGEN HEXAFLUOROSILICATE(2-)
- FLUOROSILIC ACID
- FLUOROSILICIC ACID (H2SIF6)
- FLUOSILICIC ACID
- HEXAFLUOROSILICIC ACID
- HEXAFLUOSILICIC ACID
- HYDROFLUOROSILICIC ACID
- HYDROFLUOSILIC ACID
- HYDROFLUOSILICIC ACID
- HYDROGEN HEXAFLUOROSILICATE
- HYDROGEN HEXAFLUOROSILICATE (H2SIF6)
- SAND ACID
- SILICOFLUORIC ACID
- SILICON HEXAFLUORIDE DIHYDRIDE

About | Privacy Policy | Contact Us

Web site owner: Office of Response and Restoration, NOAA's Ocean Service, National Oceanic and Atmospheric Administration.

US Government main portal: <u>USA.gov</u>.

NSF Fact Sheet on Fluoridation Chemicals

Introduction

This fact sheet provides information on the fluoride containing water treatment additives that NSF has tested and certified to NSF/ANSI Standard 60: Drinking Water Chemicals - Health Effects. According to the latest Association of State Drinking Water Administrators Survey on State Adoption of NSF/ANSI Standards 60 and 61, 45 states require that chemicals used in treating potable water must meet Standard 60 requirements. If you have questions on your state's requirements, or how the NSF/ANSI Standard 60 certified products are used in your state, you should contact your state's Drinking Water Administrator.

Water fluoridation is the practice of adjusting the fluoride content of drinking water. Fluoride is added to water for the public health benefit of preventing and reducing tooth decay and improving the health of the community. The U.S. Centers for Disease Control and Prevention is a reliable source of information on this important public health intervention. For more information please visit www.cdc.gov/fluoridation/.

NSF certifies three basic products in the fluoridation category:

- 1. Fluorosilicic Acid (aka Fluosilicic Acid or Hydrofluosilicic Acid).
- 2. Sodium Fluorosilicate (aka Sodium Silicofluoride).
- 3. Sodium Fluoride.

NSF Standard 60

Products used for drinking water treatment are evaluated to the criteria specified in NSF/ANSI Standard 60. This standard was developed by an NSF-led consortium, including the American Water Works Association (AWWA), the American Water Works Association Research Foundation (AWWARF), the Association of State Drinking Water Administrators (ASDWA), and the Conference of State Health and Environmental Managers (COSHEM). This group developed NSF/ANSI Standard 60, at the request of the US EPA Office of Water, in 1988. The NSF Joint Committee on Drinking Water Additives continues to review and maintain the standard annually. This committee consists of representatives from the original stakeholder groups as well as other regulatory, water utility and product manufacturer representatives.

Standard 60 was developed to establish minimum requirements for the control of potential adverse human health effects from products added directly to water during its treatment, storage and distribution. The standard requires a full formulation disclosure of each chemical ingredient in a product. It also requires a toxicology review to determine that the product is safe at its maximum use level and to evaluate potential contaminants in the product. The standard requires testing of the treatment chemical products, typically by dosing these in water at 10 times the maximum use level, so that trace levels of contaminants can be detected. A toxicology evaluation of test results is required to determine if any contaminant concentrations have the potential to cause adverse human health effects. The standard sets criteria for the establishment of single product allowable concentrations (SPAC) of each respective contaminant. For contaminants regulated by the U.S. EPA, this SPAC has a default level not to exceed ten-percent of the regulatory level to provide protection for the consumer in the unlikely event of multiple sources of the contaminant, unless a lower or higher number of sources can be specifically identified.

NSF Certification

NSF also developed a testing and certification program for these products, so that individual U.S. states and waterworks facilities would have a mechanism to determine which products were appropriate for use. The certification program requires annual unannounced inspections of production and distribution facilities to ensure that the products are properly formulated, packaged, and transported with safe guards against potential contamination. NSF also requires annual testing and toxicological evaluation of each NSF Certified product. NSF Certified products have the NSF Mark, the maximum use level, lot number or date code and production location on the product packaging or documentation shipped with the product.

The use of this standard and the associated certification program have yielded benefits in ensuring that drinking water additives meet the health objectives that provide the basis for public health protection. NSF maintains listings of companies that manufacture and distribute treatment products at www.nsf.org. These listings are updated daily and list the products at their allowable maximum use levels. In recognition of the important safeguards that NSF Standard 60 provides to public drinking water supplies, 45 U.S. States and 10 Canadian Provinces and Territories require drinking water treatment chemicals to comply with the requirements of the standard.

Treatment products that are used for fluoridation are addressed in Section 7 of NSF/ANSI Standard 60. The products are allowed to be used up to concentrations that result in a maximum use level of 1.2 mg/L fluoride ion in water. The NSF standard requires that the treatment products added to drinking water, as well as any impurities in the products, are supported by toxicological evaluation. The following text explains the rationale for the allowable levels established in the standard for 1) fluoride, 2) silicate, and 3) other potential contaminants that may be associated with fluoridation chemicals.

Fluoride

NSF/ANSI Standard 60 requires, when available, that the US EPA regulated maximum contaminant level (MCL) be used to determine the acceptable level for a contaminant. The EPA MCL for fluoride ion in water is 4 mg/L. The NSF Standard 60 single product allowable concentration (SPAC) for fluoride ion in drinking water from NSF Certified treatment products is 1.2 mg/L, or less than one-third of the EPA's MCL. Based on this the allowable maximum use level (MUL) for the NSF Certified fluoridation products are:

- 1. Fluorosilicie Acid: 6 mg/L.
- 2. Sodium Fluorosilicate: 2 mg/L.
- 3. Sodium Fluoride: 2.3 mg/L.

Silicate

There is no EPA MCL for silicate in drinking water. When an MCL does not exist for a contaminant, NSF/ANSI Standard 60 provides criteria to conduct a toxicological risk assessment of the contaminant and the development of a SPAC. NSF has established a SPAC for silicate at 16 mg/L. A fluorosilicate product, applied at its maximum use level, results in silicate drinking water levels that are substantially below the 16 mg/L SPAC established by NSF. For example, a sodium fluorosilicate product dosed at a concentration into drinking water that would provide the maximum concentration of fluoride allowed (1.2mg/L) would only contribute 0.8 mg/L of silicate – or 5 percent of the SPAC allowed by NSF 60.

A.5

Potential Contaminants

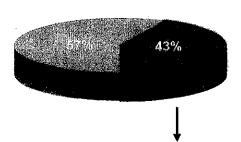
The NSF toxicology review for a chemical product considers all chemical ingredients in the product as well as the manufacturing process, processing aids, and other factors that have an impact on the contaminants present in the finished drinking water. This formulation review identifies all the contaminants that need to be analyzed in testing the product. For example, fluosilicic acid is produced by adding sulfuric acid to phosphate ore. This is typically done during the production of phosphate additives for agricultural fertilizers. The manufacturing process is documented by an NSF inspector at an initial audit of the manufacturing site and during each annual unannounced inspection of the facility. The manufacturing process, ingredients, and potential contaminants are reviewed annually by NSF toxicologists, and the product is tested for any potential contaminants. A minimum test battery for all fluoridation products includes metals of toxicological concern and radionuclides.

Many drinking water treatment additives, including fluoridation products, are transported in bulk via tanker trucks to terminals where they are transferred to rail cars, shipped to distant locations or transferred into tanker trucks, and then delivered to the water treatment plants. These tanker trucks, transfer terminals and rail cars are potential sources of contamination. Therefore, NSF also inspects, samples, tests, and certifies products at rail transfer and storage depots. It is always important to verify that the location of the product distributor (the company that delivers the product to the water utility) matches that in the official NSF Listing for the product (available at www.nsf.org).

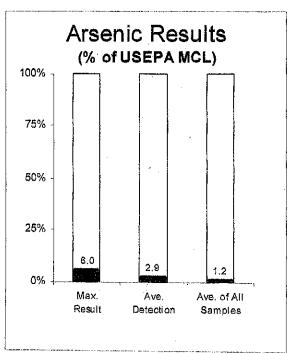
NSF has compiled data on the level of contaminants found in all fluoridation products that have applied for, or have been listed by, NSF. The statistical results in Table 1 (attached) include the test results for these products, as well as the annual monitoring tests from the period 2000 to 2006. This includes 245 separate samples analyzed during this time period. The concentrations reported represent contaminant levels that would be expected when the product is dosed into water at the Maximum Use Level (MUL). Lower product doses would produce proportionately lower contaminant concentrations (e.g. a 0.6 mg/L fluoride dose would produce one half the contaminant concentrations listed in Table 1.)

Table 1 documents that there is no contamination of drinking water from the fluoridation products NSF has tested and certified. NSF issued previous summaries of contaminant levels in fluoridation products for earlier reporting periods in 1999 and 2003. While some contaminant levels in those earlier periods were slightly higher than the current data for certain contaminants, there has not been a single fluoride product tested since the initiation of the program in 1988 with a contaminant concentration in excess of its corresponding SPAC. The documented reduction of impurities for this most current time period is due, at least in part, to the effectiveness of NSF/ANSI Standard 60 and the NSF certification program for drinking water treatment additives, and demonstrates the effectiveness of the program. The reduction in impurities is further attested to by an article in the <u>Journal of the American Water Works Association</u> entitled, "Trace Contaminants in Water Treatment Chemicals."

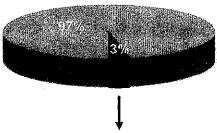
<u>Arsenic</u>


The results in Table 1 indicate that the most common contaminant detected in these products is arsenic, but it is detected in only 43% of the product samples. This means that levels of arsenic

¹ Brown, R., et al., "Trace Contaminants in Water Treatment Chemicals: Sources and Fate." <u>Journal of the American Water Works Association</u> 2004: 96:12:111.


in 57% of the samples were non-detectable, even though products are tested at 10 times their maximum use level. All detections were at levels below the Single Product Allowable Concentration, if the product is added to drinking water at (or below) its maximum use level. The SPAC, as defined in NSF/ANSI Standard 60, is one tenth of the US EPA's MCL. The current MCL for arsenic is 10 ppb, the highest detection of arsenic from a fluoridation chemical was 0.6 ppb (shown on Table 1), and the average concentration was 0.12 ppb. Even the highest concentration of 0.6 ppb was only detected because the standard requires testing the chemical at 10 times its maximum use level to detect these trace levels of contaminants. Had the dose of fluoridation additives been tested in water at the maximum use level, instead of at 10 times their maximum use levels, the arsenic concentration measured would have been below the 1 ppb reporting limit for arsenic for 100 percent of the samples measured.

57% of Fluoride products do not contain measurable amounts of Arsenic.


43% of Fluoride products contain measurable Arsenic, but the highest level recorded was only 6% of the USEPA MCL.

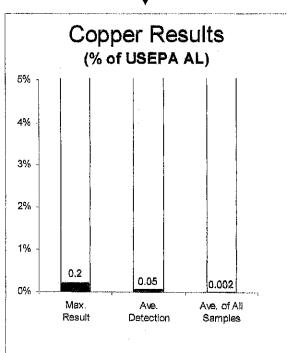
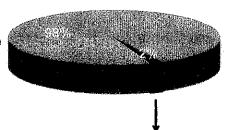

<u>Copper</u>
The second most common contaminant found, and on a much less frequent basis, is copper, and 97% of all samples tested had no detectable levels of copper. The average concentration of copper has been 0.02 ppb with 2.6 ppb being the highest concentration detected. This is well below the 130 ppb SPAC requirement of NSF 60.

Figure B

97% of Fluoride products do not contain measurable amounts of Copper.

3% of Fluoride products contain measurable Copper, but the highest level recorded was only 0.2% of the USEPA Action Level.



Lead

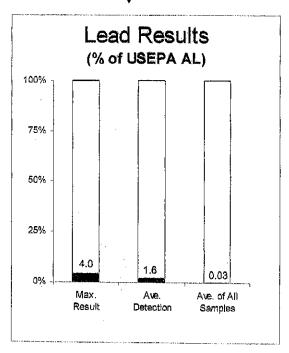

The third most common contaminant found is lead. It occurs on a much less frequent basis, and 98% of all samples tested had no detectable levels of lead. The average concentration of lead has been 0.005 ppb with 0.6 ppb being the highest concentration detected. This is well below the 1.5 ppb SPAC requirement of NSF 60.

Figure C

98% of Fluoride products do not contain measurable amounts of Lead.

2% of Fluoride products contain measurable Lead, but the highest level recorded was only 4% of the USEPA Action Level of 15ppb.

Radionuclides

Fluoridation products are also tested for radionuclides. All samples tested have not had any detectable levels of alpha or beta radiation.

Summary

In summary, the majority of fluoridation products as a class, based on NSF test results, do not add measurable amounts of arsenic, lead, other heavy metals, or radionuclide contamination to drinking water.

Additional information on fluoridation of drinking water can be found on the following web sites:

American Water Works Association (AWWA) Fluoridation Chemical Standards http://www.awwa.org/Bookstore/producttopicsresults.cfm?MetaDataID=121&nayItemNumber=5093

American Water Works Association (AWWA) position http://www.awwa.org/Advocacy/pressroom/fluoride.cfm

American Dental Association (ADA) http://www.ada.org/public/topics/fluoride/index.asp

U.S. Centers for Disease Control and Prevention (CDC) http://www.cdc.gov/fluoridation

Table 1

	Percentage	Mean	Mean	Maximum	NIOD/ANIOI	TICERA
	of Samples	Contaminant	Contaminant		NSF/ANSI	US EPA
	with	1		Contaminant	Standard 60	Maximum
	1	Concentration	Concentration	Concentration	Single	Contaminant
	Detectable	in all samples	in detectable	in detectable	Product	or Action
	Levels	(ppb)	samples (ppb)	samples (ppb)	Allowable	Level
					Concentration	
Antimony	0%	ND ND	ND	ND	0.6	6
Arsenic	43%	0.12	0.29	0.6	1	10
Barium	<1%	0.001	0.3	0.3	200	2000
Beryllium	0%	ND	ND	ND	0.4	4
Cadmium	1%	0.001	0.08	0.12	0.5	5
Chromium	<1%	0.001	0.15	0.2	10	100
Copper	3%	0.02	0.68	2.6	130	1300
Lead	2%	0.005	0.24	0.6	1.5	1500
Mercury	<1%	0.0002	0.04	0.04	0.2	2
Radionuclides	0%	ND	ND	ND	1.5	<u> </u>
– alpha pCi/L				1 (12)	لبوال	13
Radionuclides	0%	ND	ND	ND	0.4	4
– beta				X LD	0.4	4
mrem/yr						
Selenium	<1%	0.016	1.95	3.2	5	50
Thallium	<1%	0.0003	0.04	0.06	0.2	<u>30</u>

Abbreviations used in this Fact Sheet

ANSI - American National Standards Institute

AWWA - American Water Works Association

AWWARF - American Water Works Association Research Foundation

ASDWA - Association of State Drinking Water Administrators

COSHEM - Conference of State Health and Environmental Managers

EPA - U.S. Environmental Protection Agency

MCL - maximum contaminant level

mrem/yr - millirems per year - measurement of radiation exposure dose

MUL - Maximum use level

NSF-NSF International (formerly the National Sanitation Foundation)

ppb - parts per billion

PCi/L - pico curies per liter - concentration of radioactivity

SPAC - Single Product Allowable Concentration

Cosmetics

Is It a Cosmetic, a Drug, or Both? (Or Is It Soap?)

July 8, 2002

The legal difference between a cosmetic and a drug is determined by a product's intended use. Different laws and regulations apply to each type of product. Firms sometimes violate the law by marketing a cosmetic with a drug claim, or by marketing a drug as if it were a cosmetic, without adhering to requirements for drugs.

How does the law define a cosmetic?

The <u>Federal Food</u>, <u>Drug</u>, <u>and Cosmetic Act</u> (FD&C Act) defines cosmetics by their intended use, as "articles intended to be rubbed, poured, sprinkled, or sprayed on, introduced into, or otherwise applied to the human body...for cleansing, beautifying, promoting attractiveness, or altering the appearance" [FD&C Act, sec. 201(i)]. Among the products included in this definition are skin moisturizers, perfumes, lipsticks, fingernail polishes, eye and facial makeup preparations, shampoos, permanent waves, hair colors, toothpastes, and deodorants, as well as any material intended for use as a component of a cosmetic product.

How does the law define a drug?

The FD&C Act defines drugs, in part, by their intended use, as "articles intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" and "articles (other than food) intended to affect the structure or any function of the body of man or other animals" [FD&C Act, sec. 201(g)(1)].

How can a product be both a cosmetic and a drug?

Some products meet the definitions of both cosmetics and drugs. This may happen when a product has two intended uses. For example, a shampoo is a cosmetic because its intended use is to cleanse the hair. An antidandruff treatment is a drug because its intended use is to treat dandruff. Consequently, an antidandruff shampoo is both a cosmetic and a drug. Among other cosmetic/drug combinations are toothpastes that contain fluoride, deodorants that are also antiperspirants, and moisturizers and makeup marketed with sunprotection claims. Such products must comply with the requirements for both cosmetics and drugs.

What about "cosmeceuticals"?

The FD&C Act does not recognize any such category as "cosmeceuticals." A product can be a drug, a cosmetic, or a combination of both, but the term "cosmeceutical" has no meaning under the law.

How is a product's intended use established?

Intended use may be established in a number of ways. Among them are:

- Claims stated on the product labeling, in advertising, on the Internet, or in other promotional materials. Certain claims may cause a product to be considered a drug, even if the product is marketed as if it were a cosmetic. Such claims establish the product as a drug because the intended use is to treat or prevent disease or otherwise affect the structure or functions of the human body. Some examples are claims that products will restore hair growth, reduce cellulite, treat varicose veins, or revitalize cells.
- Consumer perception, which may be established through the product's reputation. This means asking why the consumer is buying it and what the consumer expects it to do.
- Ingredients that may cause a product to be considered a drug because they have a well known (to the public and industry) therapeutic use. An example is fluoride in toothpaste.

This principle also holds true for essential oils in fragrance products. A fragrance marketed for promoting attractiveness is a cosmetic. But a fragrance marketed with certain "aromatherapy" claims, such as assertions that the scent will help the consumer sleep or quit smoking, meets the definition of a drug because of its intended use.

How are the laws and regulations different for cosmetics and drugs?

The following information is not a complete treatment of cosmetic or drug laws and regulations. It is intended only to alert you to some important differences between the laws and regulations for cosmetics and drugs in the areas of approval, good manufacturing practice, registration, and labeling. You should direct questions regarding laws and regulations for drugs to FDA's <u>Center for Drug Evaluation and Research</u> (CDER).

How approval requirements are different

FDA does not have a premarket approval system for cosmetic products or ingredients, with the important exception of color additives. Drugs, however, are subject to FDA approval. Generally, drugs must either receive premarket

approval by FDA or conform to final regulations specifying conditions whereby they are generally recognized as safe and effective, and not misbranded. Currently, certain -- but not all -- over-the-counter (OTC) drugs (that is, non-prescription drugs) that were marketed before the beginning of the OTC Drug Review (May 11, 1972) may be marketed without specific approval pending publication of final regulations under the ongoing OTC Drug Review. Once a regulation covering a specific class of OTC drugs is final, those drugs must either

Be the subject of an approved New Drug Application (NDA) [FD&C Act, sec. 505(a) and (b)], or

• Comply with the appropriate monograph, or rule, for an OTC drug.

What do these terms mean?

• An NDA is the vehicle through which drug sponsors formally propose that FDA approve a new pharmaceutical for sale and marketing in the U.S. FDA only approves an NDA after determining, for example, that the data are adequate to show the drug's safety and effectiveness for its proposed use and that its benefits outweigh the risks. The NDA system is also used for new ingredients entering the OTC marketplace for the first time. For example, the newer OTC products (previously available only by prescription) are first approved through the NDA system and their 'switch' to OTC status is approved via the NDA system.

• FDA has published **monographs**, or rules, for a number of OTC drug categories. These monographs, which are published in the Federal Register, state requirements for categories of non-prescription drugs, such as what ingredients may be used and for what intended use. Among the many non-prescription drug categories covered by OTC monographs

are -

- acne medications
- treatments for dandruff, seborrheic dermatitis, and psoriasis
- sunscreens

A note on "new drugs": Despite the word "new," a "new drug" may have been in use for many years. If a product is intended for use as a drug, no matter how ancient or "traditional" its use may be, once the agency has made a final determination on the status of an OTC drug product it must have an approved NDA or comply with the appropriate OTC monograph to be marketed legally in interstate commerce. Certain OTC drugs may remain on the market without NDA approval pending final regulations covering the appropriate class of drugs.

Where to learn more about NDAs and OTC monographs: If you have questions about NDAs and OTC monographs, you should address them to CDER.

How good manufacturing practice requirements are different

Good manufacturing practice (GMP) is an important factor in assuring that your cosmetic products are neither adulterated nor misbranded. However, no regulations set forth specific GMP requirements for cosmetics. In contrast, the law requires strict adherence to GMP requirements for drugs, and there are regulations specifying minimum current GMP requirements for drugs [Title 21 of the Code of Federal Regulations (CFR), parts 210 and 211]. Failure to follow GMP requirements causes a drug to be adulterated [FD&C Act, sec. 501(a)(2) (B)].

How registration requirements are different

FDA maintains the <u>Voluntary Cosmetic Registration Program</u>, or VCRP, for cosmetic establishments and formulations [21 CFR 710 and 720]. As its name indicates, this program is voluntary. In contrast, it is mandatory for drug firms to register their establishments and list their drug products with FDA [FD&C Act, sec. 510; 21 CFR 207].

How labeling requirements are different

A cosmetic product must be labeled according to cosmetic labeling regulations. See the Cosmetic Labeling Manual for guidance on cosmetic labeling. OTC drugs must be labeled according to OTC drug regulations, including the "Drug Facts" labeling, as described in 21 CFR 201.63. Combination OTC drug/cosmetic products must have combination OTC drug/cosmetic labeling. For example, the drug ingredients must be listed alphabetically as "Active Ingredients," followed by cosmetic ingredients, listed in order of predominance as "Inactive Ingredients."

And what if it's "soap"?

Soap is a category that needs special explanation. That's because the regulatory definition of "soap" is different from the way in which people commonly use the word. Products that meet the definition of "soap" are exempt from the provisions of the FD&C Act because -- even though Section 201(i)(1) of the act includes "articles...for cleansing" in the definition of a cosmetic -- Section 201(i)(2) excludes soap from the definition of a cosmetic.

How FDA defines "soap"

Not every product marketed as soap meets FDA's definition of the term. FDA interprets the term "soap" to apply only when --